4.1 Article

Geochemical and Statistical Evaluation of Heavy Metal Status in the Region around Jinxi River, China

Journal

SOIL & SEDIMENT CONTAMINATION
Volume 23, Issue 8, Pages 850-868

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15320383.2014.887651

Keywords

Heavy metals; contamination; geochemical; statistical; Jinxi River

Funding

  1. National Water Control Major Project of China - Chinese government [2008ZX0710-006-07]

Ask authors/readers for more resources

China's rapid industrialization and mining activities have led to rigorous deterioration in the quality of soil and water. This study aimed at evaluating the environmental impacts of industrial activities around the Jinxi River using geochemical and statistical methods. To attain this aim, water and sediment samples were collected from 14 sites along the Jinxi River and around Lake Qingshan, and analyzed for their concentrations of heavy metals using ICP-mass. The results show that the concentrations of studied heavy metals didn't exceed the maximum permissible limits (MPL) in water, except for Fe and Cu. For sediment analysis, according to sediment quality guidelines (SQGs), the studied sediment samples varied from non-polluted to heavy rate for Cr, Ni, Cu, As, Mn, Zn, and Fe and non-polluted for Cd and Pb. In addition, the sites adjacent to Lina'n City were significantly enriched with Cr, Cu, Cd, and Zn and extremely enriched with As and Se. Principal component analysis (PCA) and correlation analyses revealed that an anthropogenic source was the main source for heavy metals in the river system. We concluded that geochemical and statistical analyses can provide useful information for water quality assessment. Furthermore, the Chinese government should formulate strict laws to prevent the water streams from contamination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available