4.6 Article

Wetting of soft superhydrophobic micropillar arrays

Journal

SOFT MATTER
Volume 14, Issue 36, Pages 7429-7434

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8sm01333k

Keywords

-

Funding

  1. ERC [340391 SuPro]
  2. ITN LubISS Grant [722497]
  3. Max Planck Society

Ask authors/readers for more resources

Superhydrophobic surfaces are usually assumed to be rigid so that liquids do not deform them. Here we analyze how the relation between microstructure and wetting changes when the surface is flexible. Therefore we deposited liquid drops on arrays of flexible micropillars. We imaged the drop's surface and the bending of micropillars with confocal microscopy and analyzed the deflection of micropillars while the contact line advanced and receded. The deflection is directly proportional to the horizontal component of the capillary force acting on that particular micropillar. In the Cassie or fakir'' state, drops advance by touching down on the next top faces of micropillars, much like on rigid arrays. In contrast, on the receding side the micropillars deform. The main force hindering the slide of a drop is due to pinning at the receding side, while the force on the advancing side is negligible. In the Wenzel state, micropillars were deflected in both receding and advancing states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available