4.7 Article

Biodegradable, Elastomeric, and Intrinsically Photoluminescent Poly(Silicon-Citrates) with high Photostability and Biocompatibility for Tissue Regeneration and Bioimaging

Journal

ADVANCED HEALTHCARE MATERIALS
Volume 5, Issue 3, Pages 382-392

Publisher

WILEY
DOI: 10.1002/adhm.201500643

Keywords

biocompatibility; bioimaging; elastomeric hybrid polymer; photoluminescent ability; silica-based biomaterials

Funding

  1. Xi'an Jiaotong University [DW011798N3000010]
  2. Fundamental Research Funds for the Central Universities [XJJ2014090]
  3. Natural Science Basic Research Plan in Shaanxi Province of China [2015JQ5165]
  4. National Natural Science Foundation of China [51502237]
  5. National 973 Project of China [2012CB619100]

Ask authors/readers for more resources

Biodegradable polymer biomaterials with intrinsical photoluminescent properties have attracted much interest, due to their potential advantages for tissue regeneration and noninvasive bioimaging. However, few of current biodegradable polymers possess tunable intrinsically fluorescent properties, such as high photostability, fluorescent lifetime, and quantum field, and strong mechanical properties for meeting the requirements of biomedical applications. Here, by a facile one-step thermal polymerization, elastomeric poly(silicone-citrate) (PSC) hybrid polymers are developed with controlled biodegradability and mechanical properties, tunable inherent fluorescent emission (up to 600 nm), high photostability (beyond 180 min for UV and six months for natural light), fluorescent lifetime (near 10 ns) and quantum yield (16%-35%), high cellular biocompatibility, and minimal inflammatory response in vivo, which provide advantages over conventional fluorescent dyes, quantum dots, and current fluorescent polymers. The promising applications of PSC hybrids for cell and implants imaging in vitro and in vivo are successfully demonstrated. The development of elastomeric PSC polymer may provide a new strategy in synthesizing new inorganic-organic hybrid photoluminescent materials for tissue regeneration and bioimaging applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available