4.6 Article

Coding for hydrogel organization through signal guided self-assembly

Journal

SOFT MATTER
Volume 10, Issue 3, Pages 465-469

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3sm52405a

Keywords

-

Funding

  1. National Natural Science Foundation of China [21007049, 51373124]
  2. New Century Excellent Talents in University [NECT-10-0618]
  3. High-end Foreign Experts Program [GDW20134200126]
  4. Robert W. Deutsch Foundation

Ask authors/readers for more resources

Complex structured soft matter may have important applications in the field of tissue engineering and biomedicine. However, the discovery of facile methods to exquisitely manipulate the structure of soft matter remains a challenge. In this report, a multilayer hydrogel is fabricated from the stimuli-responsive aminopolysaccharide chitosan by using spatially localized and temporally controlled sequences of electrical signals. By programming the imposed cathodic input signals, chitosan hydrogels with varying layer number and thickness can be fabricated. The inputs of electrical signals induce the formation of hydrogel layers while short interruptions create interfaces between each layer. The thickness of each layer is controlled by the charge transfer (Q = integral idt) during the individual deposition step and the number of multilayers is controlled by the number of interruptions. Scanning electron micrographs (SEMs) reveal organized fibrous structures within each layer that are demarcated by compact orthogonal interlayer structures. This work demonstrates for the first time that an imposed sequence of electrical inputs can trigger the self-assembly of multilayered hydrogels and thus suggests the broader potential for creating an electrical code to generate complex structures in soft matter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available