4.6 Article

Design and folding of colloidal patchy polymers

Journal

SOFT MATTER
Volume 9, Issue 3, Pages 938-944

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm26967h

Keywords

-

Ask authors/readers for more resources

The creation of functional nanoscale materials with complex 3D structures has been achieved by biological systems e. g. proteins, but remains a daunting challenge in materials science. Recent progress in this direction has been made with patchy particles, which can be made to self-assemble into specific structures by fine tuning the numbers, locations and interactions of the patches. Here, we present a different, bio-inspired approach to create 3D objects from chains of patchy particles that fold into structures determined by the particle sequence along the chain. The particles linked in the chains are spherical with homogeneous weak repulsive or attractive potentials and symmetry-breaking patches that provide attractive directional interactions. We show, using computer simulations, that particle sequences along the string can be designed to steer the folding into specific target structures. Moreover, we introduce a scheme to discriminate configurations that present a golf-hole like free energy landscape, which inhibits folding, from target structures that are easy to design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available