4.6 Article

Influence of solvent on the supramolecular architectures in molecular gels

Journal

SOFT MATTER
Volume 9, Issue 25, Pages 5942-5950

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3sm50936b

Keywords

-

Ask authors/readers for more resources

Elucidating the molecular structures, responsible for promoting self-assembly of low-molecular weight organogelators (LMOG) into supramolecular fibers, has been an extensive area of study. Although this has been a fruitful endeavor, this study illustrates that the chemical nature of the solvent and solvent-gelator interactions are equally important. The nanostructure, microstructure and supramolecular structures, of 12HSA molecules gels, are all influenced by the chemical nature of the solvent, which correlate to the hydrogen-bonding Hansen solubility parameter (partial derivative(h)). Depending on the solvent employed, the polymorphic form, arrangement of the carboxylic acid dimers, domain size, fiber morphology, microstructure, thermal properties and visual appearance of the gel all differ. Solvents that have partial derivative(h) < 4.4 MPa1/2, result in a hexagonal polymorphic form, with an 001 hlk spacing greater than the extended bi-molecular length of 12HSA. This nanoscale arrangement results in translucent gels that contain fibrillar aggregates corresponding to a higher crystallinity compared to molecular gels formed in solvents that have a partial derivative(h) > 4.4 MPa1/2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available