4.6 Article

Polar patterns in active fluids

Journal

SOFT MATTER
Volume 8, Issue 1, Pages 129-139

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm06077e

Keywords

-

Funding

  1. NSF [DMR-0806511, DMR-1004789]
  2. Harvard-NSF MRSEC
  3. Harvard-Kavli Nano-Bio Science and Technology Center
  4. Wyss Institute

Ask authors/readers for more resources

We study the spatio-temporal dynamics of a model of polar active fluid in two dimensions. The system exhibits a transition from an isotropic to a polarized state as a function of density. The uniform polarized state is, however, unstable above a critical value of activity. Upon increasing activity, the active fluids displays increasingly complex patterns, including traveling bands, traveling vortices and chaotic behavior. The advection arising from the particles self-propulsion and unique to polar fluids yields qualitatively new behavior as compared to that obtained in active nematic, with traveling-wave structures. We show that the nonlinear hydrodynamic equations can be mapped onto a simplified diffusion-reaction-convection model, highlighting the connection between the complex dynamics of active system and that of excitable systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available