4.6 Article

The effects of acid hydrolysis on protein biosurfactant molecular, interfacial, and foam properties: pH responsive protein hydrolysates

Journal

SOFT MATTER
Volume 8, Issue 19, Pages 5131-5139

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm25082a

Keywords

-

Funding

  1. Australian Research Council [DP1093056]
  2. AINSE Research Fellowship
  3. Queensland Government
  4. Australian Research Council [DP1093056] Funding Source: Australian Research Council

Ask authors/readers for more resources

The success of hydrolysis in improving the functional foaming properties of surface-active proteins is usually attributed to three factors: decreased molecular size; increased hydrophobicity; and microchemical changes, specifically deamidation of glutamine and asparagine. Studying these individual factors is difficult using naturally-occurring proteins, as hydrolysate products are complex mixed systems, and the mechanisms of foam stabilization are likewise complex. To address this complexity we report studies of a recombinant protein (DAMP4) which comprises four peptide surfactant (DAMP1) molecules connected by acid-labile amino acid (Asp-Pro) linkers. Hydrolysis of DAMP4 under conditions of low pH and high temperature produced h-DAMP1, a mixture of deamidated variants of the chemically-synthesized DAMP1 peptide surfactant. By examining foaming performance of these molecules, we are able to isolate the effects of molecule size (DAMP1 vs. DAMP4) and deamidation (h-DAMP1 vs. DAMP1). Molecule size had little effect on foaming for the conditions studied. However, deamidation completely changed foaming behaviour, most likely due to alteration of interfacial charge structure (through deamidation of glutamine to glutamic acid) and consequent effects on thin-film stability. Good foaming was observed only at pH values away from the isoelectric points (pI) of the biomolecules where an electrostatic barrier to film rupture can occur. The addition of Zn2+ to DAMP4, h-DAMP1 and DAMP1 caused visible aggregation under all conditions, which assisted in stabilising foams only in situations where a net charge would be expected.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available