4.6 Article

Yielding dynamics of a Herschel-Bulkley fluid: a critical-like fluidization behaviour

Journal

SOFT MATTER
Volume 8, Issue 15, Pages 4151-4164

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm06918k

Keywords

-

Ask authors/readers for more resources

The shear-induced fluidization of a carbopol microgel is investigated during long start-up experiments using combined rheology and velocimetry in Couette cells of varying gap widths and boundary conditions. As already described in [Divoux et al., Phys. Rev. Lett., 2010, 104, 208301], we show that the fluidization process of this simple yield stress fluid involves a transient shear-banding regime whose duration tau(f) decreases as a power law of the applied shear rate (gamma) over dot. Here we go one step further by an exhaustive investigation of the influence of the shearing geometry through the gap width e and the boundary conditions. While slip conditions at the walls seem to have a negligible influence on the fluidization time tau(f), different fluidization processes are observed depending on (gamma) over dot and e: the shear band remains almost stationary for several hours at low shear rates or small gap widths before strong fluctuations lead to a homogeneous flow, whereas at larger values of (gamma) over dot or e, the transient shear band is seen to invade the whole gap in a much smoother way. Still, the power-law behaviour appears to be very robust and hints to critical-like dynamics. To further discuss these results, we propose (i) a qualitative scenario to explain the induction-like period that precedes full fluidization and (ii) an analogy with critical phenomena that naturally leads to the observed power laws if one assumes that the yield point is the critical point of an underlying out-of-equilibrium phase transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available