4.6 Article

Preparation of hyaluronic acid nanoparticles via hydrophobic association assisted chemical cross-linking-an orthogonal modular approach

Journal

SOFT MATTER
Volume 7, Issue 16, Pages 7517-7525

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm05785e

Keywords

-

Funding

  1. European Community [238551]

Ask authors/readers for more resources

The objective of this study was to develop an efficient and stable drug delivery nanocarrier based on a dually functionalized hyaluronic acid (HA) derivative which could be used as a long circulating drug delivery vehicle. Self-assembled HA nanoparticles (HA NPs) were prepared by attaching pyrene to the HA backbone and the obtained physical NPs were stabilized by chemical cross-linking of the HA chains to form hydrophobic core-hydrophilic shell NPs. Orthogonal chemoselective reactions were applied for conversion of HA into its amphiphilic derivative and subsequent cross-linking of the formed micellar-type associates. Chemical stabilization of the physical HA associates afforded therefore very stable nanoparticles that could easily be re-suspended in aqueous media after freeze-drying. In contrast, freeze-drying of the uncross-linked physically associated particles resulted in a non-soluble material. Doxorubicin (DOX), a typical anticancer drug, was entrapped into HA NPs via ionic and/or hydrophobic interactions and used for in vitro drug release. Higher loading efficiency and the slower release profile of DOX from HA NPs were obtained with the hydrophobically encapsulated drug. We have shown that free HA NPs were readily taken up by NIH 3T3 cells without causing any toxicity to the cells, while the DOX-loaded HA NPs resulted in increased cell death comparable to the free drug. This study clearly showed the applicability of orthogonal chemoselective modifications for the synthesis of stable HA nanogel particles as a potential cancer-targeted drug delivery system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available