4.6 Article

Microscopic structure influencing macroscopic splash at high Weber number

Journal

SOFT MATTER
Volume 7, Issue 24, Pages 11325-11333

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm05801k

Keywords

-

Ask authors/readers for more resources

The dynamics of water drop impact at high impinging velocity onto superhydrophobic substrates is experimentally investigated. The solid substrate-comprised of regular and hydrophobic micropillars-is transparent, thereby facilitating close-up, top-or-bottom-view, high-speed imaging. With a sufficient impact velocity, instead of a completely-bouncing Fakir droplet, wetting splashing can occur, with an entrapped air bubble at the centre surrounded by a wetted area as well as an emission of satellite droplets during the advancing phase of spreading lamella. A large portion of the lamella travels upon air and subsequently recoils due to surface tension, forming a partial rebound on the central wet spot. We present and discuss quantitative results of the entrapped air bubble, the central wetted area, and the maximal spreading lamella as the impact velocity is increased. We further vary the lattice periodicity of the micro-patterns and find its profound influence on the macroscopic flow. More specifically, directional splashing can emerge, emitting secondary droplets in certain directions which are associated with the lattice. Directional splashing can be suppressed to a gentle spreading by decreasing the periodicity of the lattice and, furthermore, can be tuned to a completely-wetting splashing in the diagonal directions of the lattice by a larger periodicity, offering opportunities to control the wetting process. Finally, the elimination of directional splashing by reducing air pressure suggests that the underlying air is squeezed outwards by the falling droplet upon the solid boundary whereby the air flow is affected, leading to different splashing behavior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available