4.6 Article

Construction of an ultrahigh strength hydrogel with excellent fatigue resistance based on strong dipole-dipole interaction

Journal

SOFT MATTER
Volume 7, Issue 6, Pages 2825-2831

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0sm01108h

Keywords

-

Funding

  1. National Natural Science Foundation of China [30770587, 50973082]
  2. Tianjin Municipal Natural Science Foundation [10JCZDJC17400]

Ask authors/readers for more resources

A high strength hydrogel was fabricated by one-step copolymerization of dipole-dipole interaction-containing monomer, acrylonitrile, super-hydrophilic comonomer, 2-methacryloyloxyethyl phosphorylcholine and crosslinker, polyethylene glycol diacrylate (M-n = 575, PEGDA575). This dipole-dipole reinforced (DDR) hydrogel demonstrated intriguing combinations of properties such as withstanding several MPa tensile stress, tens of MPa compressive strength, excellent fatigue resistance and no yielding during tensile tests. The equilibrium water content and transparency of DDR hydrogels could be tuned by varying monomer concentration and monomer ratio. The gels exhibited low cytotoxicity and antifouling characteristic. Biodegradable high strength hydrogel could also be constructed by merely replacing PEGDA575 with bioreducible crosslinker. The method reported here offers a general strategy to design biocompatible high-strength hydrogels for tissue engineering scaffolds by copolymerizing monomer containing dipole-dipole pairing with other hydrophilic monomer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available