4.6 Article

Adsorption of core-shell nanoparticles at liquid-liquid interfaces

Journal

SOFT MATTER
Volume 7, Issue 17, Pages 7663-7675

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm05407d

Keywords

-

Funding

  1. MC-IEF [2009-252926]
  2. COST Action [D43]
  3. SNSF [PP002_126483/1, SCOPES IZ73Z0-128169]

Ask authors/readers for more resources

The use of nanoparticles as building blocks for the self-assembly of functional materials has been rapidly increasing in recent years. In particular, two-dimensional materials can be effectively self-assembled at liquid interfaces thanks to particle localization and mobility at the interface in combination with tailoring of specific interactions. Many recent advances have been made in the understanding of the adsorption and assembly at liquid interfaces of small hydrophobic nanoparticles stabilized by short-chain rigid dispersants but the corresponding studies on core-shell nanoparticles sterically stabilized by extended hydrophilic polymer brushes are presently missing. Such particles offer significant advantages in terms of fabrication of functional, responsive and bio-compatible materials. We present here a combination of experimental and numerical data together with an intuitive and simple model aimed at elucidating the mechanisms governing the adsorption of iron oxide nanparticles (5-10 nm) stabilized by low molecular weight poly(ethylene glycol) (1.5-10 kDa). We show that the adsorption dynamics and the structure of the final assembly depend on the free energy of the particles at the interface and discuss the thermodynamics of the adsorption in terms of the polymer solubility in each phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available