4.6 Article

The relationship between membrane curvature generation and clustering of anchored proteins: a computer simulation study

Journal

SOFT MATTER
Volume 6, Issue 24, Pages 6109-6118

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0sm00418a

Keywords

-

Funding

  1. National Natural Science Foundation of China [20736005, 20876004]
  2. Research Foundation for Young Researchers of BUCT

Ask authors/readers for more resources

The mechanism of biomembrane curvature generation has been studied for decades because of its role in many cellular functions. In this article, N-varied dissipative particle dynamics was used to investigate the relationship between membrane curvature generation and self-assembly of anchored proteins, and a protein aggregation mechanism of curvature generation was proposed. According to the mechanism, the curvature production is enhanced by the self-assembly of proteins, and the enhancement depends on the protein hydrophobic length. Contrary to the theoretic predictions that shallow insertion depth of proteins is more effective in producing positive membrane curvature, our simulations show the opposite trend if the self-assembly of proteins is taken into account. Furthermore, for the membrane proteins with deep insertion, simulations indicate that the self-assembly of proteins may induce membrane vesiculation at negative membrane tensions. In addition, the protein aggregates can sense the membrane curvature, although the way they respond to the local curvature again depends on the protein hydrophobic length. Especially, the self-assembly of shallow inserting proteins is significantly affected by the local membrane curvature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available