4.6 Article

The dependence between forces and dissipation rates mediating dynamic self-assembly

Journal

SOFT MATTER
Volume 5, Issue 6, Pages 1279-1284

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b811254a

Keywords

-

Ask authors/readers for more resources

Dynamic self-assembly (DySA) outside of thermodynamic equilibrium underlies many forms of adaptive and intelligent behaviors in both natural and artificial systems. At the same time, the fundamental principles governing DySA systems remain largely undeveloped. In this context, it is desirable to relate the forces mediating self-assembly to the nonequilibrium thermodynamics of the system -specifically, to the rate of energy dissipation. In this paper, numerical simulations are used to calculate dissipation rates in a prototypical, magneto-hydrodynamic DySA system, and to relate these rates to dissipative forces acting between the system's components. It is found that (i) dissipative forces are directly proportional to the gradient of the dissipation rate with respect to a coordinate characterizing the steady-state assemblies, and (ii) the constant of proportionality linking these quantities is a characteristic time describing the response of the system to small, externally applied perturbations. This relationship complements and extends the applicability of Prigogine's minimal-entropy-production formalism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available