4.6 Article

Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence

Journal

SOFT MATTER
Volume 4, Issue 8, Pages 1681-1687

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b803742f

Keywords

-

Ask authors/readers for more resources

The release behavior of fluorescent dyes, oligo DNAs and spherical proteins from self-assembled organic nanotubes having 7-9 nm inner diameters has been studied in terms of novel nanocontainers with high-axial ratios. Both much smaller inner diameters and asymmetric inner and outer surfaces are characteristic of the nanotubes. The acid-dissociation constant (pK(a)) of the amino groups located at the inner surface and the thermal phase transition temperature (Tg-1) of the nanotube were evaluated based on the pH titration and variable-temperature circular dichroism (CD) spectroscopic experiments, respectively. Each guest was slowly released from both open ends of the nanotube under weak alkaline conditions (pH 8.5), as a result of the decrease in electrostatic attraction between the inner surface and the guests. Elevated temperatures above the obtained Tg-1 converted the monolayer membrane of the nanotube from a solid state to a fluid one, promoting the remarkably fast release of the guests. The unique release properties of the nanotube as a nanocontainer with two terminal open ends were compared with those of liposomes that posses a closed hollow space covered with fluid bilayer membranes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available