4.7 Article

Amphiphilic Hybrid Nano Building Blocks with Surfactant-Mimicking Structures

Journal

ACS MACRO LETTERS
Volume 4, Issue 7, Pages 736-740

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.5b00321

Keywords

-

Funding

  1. University of Connecticut
  2. Green Emulsions Micelles and Surfactants (GEMS) Center

Ask authors/readers for more resources

We report the preparation and self-assembly of amphiphilic hybrid nano building blocks (NBBs) with surfactant-mimicking structures. These NBBs, composed of hydrophilic silica-like heads tethered with well-defined one or two hydrophobic polystyrene (PS) tails, were prepared by efficient intramolecular cross-linking via silane chemistry. Using a series of AB diblock copolymers (BCPs) and ABA tri-BCPs of PS and poly(tert-butyl acrylate-co-3-(trimethoxysilyl)propyl methacrylate) (P(tBA-co-TMSPMA)), the intramolecular self-folding of P(tBA-co-TMSPMA) blocks and the deprotection of tert-butyl groups were demonstrated to be an efficient method to prepare amphiphilic NBBs with a hydrophilic silica head tethered by one or two PS tails. The formation of NBBs was carefully studied by gel permeation chromatography, nuclear magnetic resonance spectroscopy, and transmission electron microscopy. The self-assembly of these amphiphilic NBBs was further investigated by fixing the molecular weight of PS tails and varying the size of hydrophilic heads. The intramolecular cross-linking of hydrophilic heads that shifted the hydrophilic/hydrophobic balance of polymers resulted in morphological transitions from bilayered vesicles to spherical micelles. Spherical micelles prepared from NBBs with large hydrophilic heads were found to have surface protrusions that differed from the self-assembly of linear BCPs. We also observed that the chain conformation of PS tails was critical for the self-assembly of NBBs, where the bitailed NBBs with highly stretched PS tails favored bilayered vesicle structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available