4.6 Article

Autonomous mobile robot dynamic motion planning using hybrid fuzzy potential field

Journal

SOFT COMPUTING
Volume 16, Issue 1, Pages 153-164

Publisher

SPRINGER
DOI: 10.1007/s00500-011-0742-z

Keywords

Fuzzy potential field; Mobile robot; Dynamic motion planning

Ask authors/readers for more resources

A new fuzzy-based potential field method is presented in this paper for autonomous mobile robot motion planning with dynamic environments including static or moving target and obstacles. Two fuzzy Mamdani and TSK models have been used to develop the total attractive and repulsive forces acting on the mobile robot. The attractive and repulsive forces were estimated using four inputs representing the relative position and velocity between the target and the robot in the x and y directions, in one hand, and between the obstacle and the robot, on the other hand. The proposed fuzzy potential field motion planning was investigated based on several conducted MATLAB simulation scenarios for robot motion planning within realistic dynamic environments. As it was noticed from these simulations that the proposed approach was able to provide the robot with collision-free path to softly land on the moving target and solve the local minimum problem within any stationary or dynamic environment compared to other potential field-based approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available