4.6 Article

Interfacial characterization of soil-embedded optical fiber for ground deformation measurement

Journal

SMART MATERIALS AND STRUCTURES
Volume 23, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/23/9/095022

Keywords

fiber optic sensor; geotechnical monitoring; ground deformation; pullout test; interface behavior; progressive failure

Funding

  1. National Natural Science Foundation of China [41230636, 41302217]
  2. National Basic Research Program of China (973 Program) [2011CB710605]
  3. National Key Technology R&D Program of China [2012BAK10B05]

Ask authors/readers for more resources

Recently fiber-optic sensing technologies have been applied for performance monitoring of geotechnical structures such as slopes, foundations, and retaining walls. However, the validity of measured data from soil-embedded optical fibers is strongly influenced by the properties of the interface between the sensing fiber and the soil mass. This paper presents a study of the interfacial properties of an optical fiber embedded in soil with an emphasis on the effect of overburden pressure. Laboratory pullout tests were conducted to investigate the load-deformation characteristics of a 0.9 mm tight-buffered optical fiber embedded in soil. Based on a tri-linear interfacial shear stress-displacement relationship, an analytical model was derived to describe the progressive pullout behavior of an optical fiber from soil matrix. A comparison between the experimental and predicted results verified the effectiveness of the proposed pullout model. The test results are further interpreted and discussed. It is found that the interfacial bond between an optical fiber and soil is prominently enhanced under high overburden pressures. The apparent coefficients of friction of the optical fiber/soil interface decrease as the overburden pressure increases, due to the restrained soil dilation around the optical fiber. Furthermore, to facilitate the analysis of strain measurement, three working states of a soil-embedded sensing fiber were defined in terms of two characteristic displacements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available