4.6 Article

Optimal load resistance of a randomly excited nonlinear electromagnetic energy harvester with Coulomb friction

Journal

SMART MATERIALS AND STRUCTURES
Volume 23, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/23/9/095001

Keywords

nonlinear energy harvester; random excitation; friction; optimal load resistance

Funding

  1. National Natural Science Foundation of China [11025211, 11302064, 11202181]
  2. special fund for the Doctoral Program of Higher Education of China [20110101110050, 20120101120171]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

A nonlinear electromagnetic energy harvester directly powering a load resistance is considered in this manuscript. The nonlinearity includes the cubic stiffness and the unavoidable Coulomb friction, and the base excitation is confined to Gaussian white noise. Directly starting from the coupled equations, a novel procedure to evaluate the random responses and the mean output power is developed through the generalized harmonic transformation and the equivalent non-linearization technique. The dependence of the optimal ratio of the load resistance to the internal resistance and the associated optimal mean output power on the internal resistance of the coil is established. The principle of impedance matching is correct only when the internal resistance is infinity, and the optimal mean output power approaches an upper limit as the internal resistance is close to zero. The influence of the Coulomb friction on the optimal resistance ratio and the optimal mean output power is also investigated. It is proved that the Coulomb friction almost does not change the optimal resistance ratio although it prominently reduces the optimal mean output power.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available