4.6 Article Proceedings Paper

Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines

Journal

SMART MATERIALS AND STRUCTURES
Volume 20, Issue 9, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/20/9/094016

Keywords

-

Ask authors/readers for more resources

This paper deals with different structuring methods for high temperature resistant nickel alloys. The ideal structured surface for a possible application on the blades of aeroengines combines high oxidation resistance with low drag in a hot gas flow. The effect of drag reduction due to riblet structured surfaces was originally inspired by shark scales, which have a drag reducing riblet structure. The necessary riblet sizes for effective drag reduction depend on the temperature, pressure and velocity of the flowing medium (gas or liquid). These riblet sizes were calculated for the different sections in an aeroengine. The riblets were successfully produced on a NiCoCrAlY coating by picosecond laser treatment. This method is suitable for larger structures within the range of some tens of micrometers. Furthermore, experiments were performed by depositing different materials through polymer and metal masks via electrodeposition and physical vapor deposition. All fabricated structures were oxidized at 900-1000 degrees C for up to 100 h to simulate the temperature conditions in an aeroengine. The resulting shape of the riblets was characterized using scanning electron microscopy. The most accurate structures were obtained by using photolithography with a subsequent electrodeposition of nickel. This method is suited for single digit micrometer structures. The reduction of the wall shear stress was measured in an oil channel. The riblet structures prior to oxidation showed a reduction of the wall shear stress of up to 4.9% compared to a normal smooth surface. This proves that the fabricated riblet design can be used as a drag reducing surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available