4.6 Article

Electromechanical properties of CNT-coated cotton yarn for electronic textile applications

Journal

SMART MATERIALS AND STRUCTURES
Volume 20, Issue 1, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0964-1726/20/1/015004

Keywords

-

Ask authors/readers for more resources

Smart fabrics have attracted considerable attention due to their potential applications. The essential features of smart fabrics include wearability, weaveability, and stretchability, as well as their sensing/response capability, which is frequently based on electrical measurement. Thus, the electromechanical behavior of these fabrics is considered the most important material property. Here, we report the negative piezoresistance of single-walled carbon nanotube coated cotton yarn (SWNT-CY). The gauge factor (the ratio of the normalized change in piezoresistance to the change in strain) of SWNT-CY is measured to be -24. It is noteworthy that the factor is negative and an order of magnitude higher than that for conventional metal strain gauges. The negative piezoresistance is due to mechanical contact between fabric fibers, which leads to better electrical paths of SWNT networks. The conduction behavior can be modeled as fluctuation-induced tunneling (FIT) through the contact barriers between conducting regions. The effective barrier strength of strained SWNT-CY is measured to be similar to 30% lower than that of unstrained SWNT-CY. This characteristic may offer new design opportunities for wearable electronics and has significant implications for sensor applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available