4.8 Article

A Flexible Wearable Pressure Sensor with Bioinspired Microcrack and Interlocking for Full-Range Human-Machine Interfacing

Journal

SMALL
Volume 14, Issue 44, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201803018

Keywords

bioinspired; electronic skins; full-range healthcare monitoring; graphene; wearable pressure sensors

Funding

  1. National Natural Science Foundation of China
  2. Beijing Natural Science Foundation [2152023]
  3. National Key Research and Development Project [2016YFC0801302]
  4. Beijing Talent Fund [2016000021223ZK34]
  5. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Flexible wearable pressure sensors have drawn tremendous interest for various applications in wearable healthcare monitoring, disease diagnostics, and human-machine interaction. However, the limited sensing range (<10%), low sensing sensitivity at small strains, limited mechanical stability at high strains, and complicated fabrication process restrict the extensive applications of these sensors for ultrasensitive full-range healthcare monitoring. Herein, a flexible wearable pressure sensor is presented with a hierarchically microstructured framework combining microcrack and interlocking, bioinspired by the crack-shaped mechanosensory systems of spiders and the wing-locking sensing systems of beetles. The sensor exhibits wide full-range healthcare monitoring under strain deformations of 0.2-80%, fast response/recovery time (22 ms/20 ms), high sensitivity, the ultrasensitive loading sensing of a feather (25 mg), the potential to predict the health of patients with early-stage Parkinson's disease with the imitated static tremor, and excellent reproducibility over 10 000 cycles. Meanwhile, the sensor can be assembled as smart artificial electronic skins (E-skins) for simultaneously mapping the pressure distribution and shape of touching sensing. Furthermore, it can be attached onto the legs of a smart robot and coupled to a wireless transmitter for wirelessly monitoring human-motion interactivities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available