4.8 Article

Thermoelectric SnTe with Band Convergence, Dense Dislocations, and Interstitials through Sn Self-Compensation and Mn Alloying

Journal

SMALL
Volume 14, Issue 37, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201802615

Keywords

band convergence; dislocations; interstitials; self-compensation; SnTe

Funding

  1. National Natural Science Foundation of China [51622101, 51771065, 51471061]

Ask authors/readers for more resources

SnTe is known as an eco-friendly analogue of PbTe without toxic elements. However, the application potentials of pure SnTe are limited because of its high hole carrier concentration derived from intrinsic Sn vacancies, which lead to a high electrical thermal conductivity and low Seebeck coefficient. In this study, Sn self-compensation and Mn alloying could significantly improve the Seebeck coefficients in the whole temperature range through simultaneous carrier concentration optimization and band engineering, thereby leading to a large improvement of the power factors. Combining precipitates and atomic-scale interstitials due to Mn alloying with dense dislocations induced by long time annealing, the lattice thermal conductivity is drastically reduced. As a result, an enhanced figure of merit (ZT) of 1.35 is achieved for the composition of Sn0.94Mn0.09Te at 873 K and the ZT(ave) from 300 to 873 K is boosted to 0.78, which is of great significance for practical application. Hitherto, the ZT(max) and ZT(ave) of this work are the highest values among all single-element-doped SnTe systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available