4.8 Article

Ultrathin MXene Nanosheets Decorated with TiO2 Quantum Dots as an Efficient Sulfur Host toward Fast and Stable Li-S Batteries

Journal

SMALL
Volume 14, Issue 41, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201802443

Keywords

Li-S batteries; MXene (Ti3C2Tx); quantum dots; solvothermal synthesis; TiO2

Funding

  1. National Natural Science Foundation of China [21676064, 51633003]

Ask authors/readers for more resources

Being conductive and flexible, 2D transition metal nitrides and carbides (MXenes) can serve in Li-S batteries as sulfur hosts to increase the conductivity and alleviate the volume expansion. However, the surface functional groups, such as -OH and -F, weaken the ability of bare MXenes in the chemisorption of polysulfides. Besides, they create numerous hydrogen bonds which make MXenes liable to restack, resulting in substantial loss of active area and, thus, inaccessibility of ions and electrolyte. Herein, a facile, one-step strategy is developed for the growth of TiO2 quantum dots (QDs) on ultrathin MXene (Ti3C2Tx) nanosheets by cetyltrimethylammonium bromide-assisted solvothermal synthesis. These QDs act as spacers to isolate the MXene nanosheets from restacking, and preserve their 2D geometry which guarantees larger electrode-electrolyte contact area and higher sulfur loading. The stronger adsorption energy of polysulfides with TiO2 (than with Ti3C2Tx), as proven by density functional theory calculations, is essential for better on-site polysulfide retention. The ultrathin nature and protected conductivity ensure rapid ion and electron diffusion, and the excellent flexibility maintains high mechanical integrity. In result, the TiO2 QDs@MXene/S cathode exhibits significantly improved long-term cyclability and rate capability, disclosing a new opportunity toward fast and stable Li-S batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available