4.8 Article

Hierarchical 3D SERS Substrates Fabricated by Integrating Photolithographic Microstructures and Self-Assembly of Silver Nanoparticles

Journal

SMALL
Volume 10, Issue 13, Pages 2703-2711

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201303773

Keywords

-

Funding

  1. National Research Foundation, Singapore [NRF-NRFF2012-04]
  2. Nanyang Technological University's start-up grant [M4080758]

Ask authors/readers for more resources

Most of the surface-enhanced Raman scattering (SERS) substrates are 2D planar systems, which limits the SERS active area to a single Cartesian plane. Here, we fabricate 3D SERS substrates with the aim to break the traditional 2D SERS active area limitation, and to extend the SERS hotspots into the third dimension along the z-axis. Our 3D SERS substrates are tailored with increased SERS hotspots in the z-direction from tens of nanometers to tens of micrometers, increasing the hotspots in the z-direction by at least an order of magnitude larger than the confocal volume (similar to 1 mu m) of most Raman spectrometers. Various hierarchical 3D SERS-active microstructures are fabricated by combining 3D laser photolithography with Langmuir-Blodgett nanoparticle assembly. 3D laser photolithography creates microstructured platforms required to extend the SERS-active area into 3D, and the self-assembly of Ag nanoparticles ensures homogeneous coating of SERS-active Ag nanoparticles over the entire microstructured platforms. Large-area 3D Raman imaging demonstrates that homogeneous signals can be collected throughout the entire 3D SERS substrates. We vary the morphology, height, and inclination angles of the 3D microstructures, where the inclination angle is found to exhibit strong influence on the SERS signals. We also demonstrate a potential application of this hierarchical 3D SERS substrate in information tagging, storage and encryption as SERS micro-barcodes, where multiple micro-barcodes can be created within a single set of microstructures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available