4.8 Article

Effects of Free Carriers on Piezoelectric Nanogenerators and Piezotronic Devices Made of GaN Nanowire Arrays

Journal

SMALL
Volume 10, Issue 22, Pages 4718-4725

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201400768

Keywords

free carriers; GaN nanowire arrays; piezoelectric nanogenerators; piezotronic devices

Funding

  1. National Science Council [NSC-101-2221-E-006-131-MY3, NSC-101-2622-E-006-015-CC1, NSC-101-2622-E-006-005-CC1]

Ask authors/readers for more resources

This study investigates the role of carrier concentration in semiconducting piezoelectric single-nanowire nanogenerators (SNWNGs) and piezotronic devices. Unintentionally doped and Si-doped GaN nanowire arrays with various carrier concentrations, ranging from 10(17) (unintentionally doped) to 10(19) cm(-3) (heavily doped), are synthesized. For SNWNGs, the output current of individual nanowires starts from a negligible level and rises to the maximum of approximate to 50 nA at a doping concentration of 5.63 x 10(18) cm(-3) and then falls off with further increase in carrier concentration, due to the competition between the reduction of inner resistance and the screening effect on piezoelectric potential. For piezotronic applications, the force sensitivity based on the change of the Schottky barrier height works best for unintentionally doped nanowires, reaching 26.20 +/- 1.82 meV nN(-1) and then decreasing with carrier concentration. Although both types of devices share the same Schottky diode, they involve different characteristics in that the slope of the current-voltage characteristics governs SNWNG devices, while the turn-on voltage determines piezotronic devices. It is demonstrated that free carriers in piezotronic materials can influence the slope and turn-on voltage of the diode characteristics concurrently when subjected to strain. This work offers a design guideline for the optimum doping concentration in semiconductors for obtaining the best performance in piezotronic devices and SNWNGs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available