4.8 Review

Unique Role of Self-Assembled Monolayers in Carbon Nanomaterial-Based Field-Effect Transistors

Journal

SMALL
Volume 9, Issue 8, Pages 1144-1159

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201202973

Keywords

self-assembled monolayers; field-effect transistors; graphene; carbon nanotubes

Funding

  1. MOST [2012CB921404]
  2. NSFC [21225311, 51121091, 2112016]
  3. 111 Project [B08001]

Ask authors/readers for more resources

Molecular self-assembly is a promising technology for creating reliable functional films in optoelectronic devices with full control of thickness and even spatial resolution. In particular, rationally designed self-assembled monolayers (SAMs) play an important role in modifying the electrode/semiconductor and semiconductor/dielectric interfaces in field-effect transistors. Carbon nanomaterials, especially single-walled carbon nanotubes and graphene, have attracted intense interest in recent years due to their remarkable physicochemical properties. The combination of the advantages of both SAMs and carbon nanomaterials has been opening up a thriving research field. In this Review article, the unique role of SAMs acting as either active or auxiliary layers in carbon nanomaterials-based field-effect transistors is highlighted for tuning the substrate effect, controlling the carrier type and density in the conducting channel, and even installing new functionalities. The combination of molecular self-assembly and molecular engineering with materials fabrication could incorporate diverse molecular functionalities into electrical nanocircuits, thus speeding the development of nanometer/molecular electronics in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available