4.8 Article

Photothermally Controlled Gene Delivery by Reduced Graphene Oxide-Polyethylenimine Nanocomposite

Journal

SMALL
Volume 10, Issue 1, Pages 117-126

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201202636

Keywords

photothermal transfection; reduced graphene oxide; polyethylenimine; gene delivery

Funding

  1. Institute for Basic Science
  2. Korea government [CA1203-02]
  3. Ministry of Science, ICT & Future Planning, Republic of Korea [IBS-R007-D1-2014-A00] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Externally stimuli-triggered spatially and temporally controlled gene delivery can play a pivotal role in achieving targeted gene delivery with maximized therapeutic efficacy. In this study, a photothermally controlled gene delivery carrier is developed by conjugating low molecular-weight branched polyethylenimine (BPEI) and reduced graphene oxide (rGO) via a hydrophilic polyethylene glycol (PEG) spacer. This PEG-BPEI-rGO nanocomposite forms a stable nano-sized complex with plasmid DNA (pDNA), as confirmed by physicochemical studies. For the in vitro gene transfection study, PEG-BPEI-rGO shows a higher gene transfection efficiency without observable cytotoxicity compared to unmodified controls in PC-3 and NIH/3T3 cells. Moreover, the PEG-BPEI-rGO nanocomposite demonstrates an enhanced gene transfection efficiency upon NIR irradiation, which is attributed to accelerated endosomal escape of polyplexes augmented by locally induced heat. The endosomal escaping effect of the nanocomposite is investigated using Bafilomycin A1, a proton sponge effect inhibitor. The developed photothermally controlled gene carrier has the potential for spatial and temporal site-specific gene delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available