4.8 Article

Flexible CoAl LDH@PEDOT Core/Shell Nanoplatelet Array for High-Performance Energy Storage

Journal

SMALL
Volume 9, Issue 1, Pages 98-106

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201201336

Keywords

layered double hydroxides; core; shell architectures; nanoplatelet arrays; flexibility; supercapacitors

Funding

  1. National Natural Science Foundation of China
  2. 973 Program [2011CBA00504]
  3. Beijing Education Committee
  4. Fundamental Research Funds for the Central Universities [ZY1215]

Ask authors/readers for more resources

A CoAl-layered double hydroxide (LDH)@poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanoplatelet array (NPA) is grown on a flexible Ni foil substrate as a high-performance pseudocapacitor. The LDH@PEDOT core/shell NPA shows a maximum specific capacitance of 649 F/g (based on the total mass) by cyclic voltammetry (scan rate: 2 mV/s) and 672 F/g by galvanostatic discharge (current density: 1 A/g). Furthermore, the hybrid NPA electrode also exhibits excellent rate capability with a specific energy of 39.4 Wh/kg at a current density of 40 A/g, as well as good long-term cycling stability (92.5% of its original capacitance is retained after 5000 cycles). These performances are superior to those of conventional supercapacitors and LDH NPA without the PEDOT coating. The largely enhanced pseudocapacitor behavior of the LDH@PEDOT NPA electrode is related to the synergistic effect of its individual components: the LDH nanoplatelet core provides abundant energy-storage capacity, while the highly conductive PEDOT shell and porous architecture facilitate the electron/mass transport in the redox reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available