4.8 Article

Zebrafish High-Throughput Screening to Study the Impact of Dissolvable Metal Oxide Nanoparticles on the Hatching Enzyme, ZHE1

Journal

SMALL
Volume 9, Issue 9-10, Pages 1776-1785

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201202128

Keywords

high throughput screening; metal oxides; hatching interference; predictive toxicology; zebrafish

Funding

  1. National Science Foundation
  2. Environmental Protection Agency [DBI 0830117]
  3. US Public Health Service [RO1 ES016746, U19 ES019528]

Ask authors/readers for more resources

The zebrafish is emerging as a model organism for the safety assessment and hazard ranking of engineered nanomaterials. In this Communication, the implementation of a roboticized high-throughput screening (HTS) platform with automated image analysis is demonstrated to assess the impact of dissolvable oxide nanoparticles on embryo hatching. It is further demonstrated that this hatching interference is mechanistically linked to an effect on the metalloprotease, ZHE 1, which is responsible for degradation of the chorionic membrane. The data indicate that 4 of 24 metal oxide nanoparticles (CuO, ZnO, Cr2O3, and NiO) could interfere with embryo hatching by a chelator-sensitive mechanism that involves ligation of critical histidines in the ZHE1 center by the shed metal ions. A recombinant ZHE1 enzymatic assay is established to demonstrate that the dialysates from the same materials responsible for hatching interference also inhibit ZHE1 activity in a dose-dependent fashion. A peptide-based BLAST search identifies several additional aquatic species that express enzymes with homologous histidine-based catalytic centers, suggesting that the ZHE1 mechanistic paradigm could be used to predict the toxicity of a large number of oxide nanoparticles that pose a hazard to aquatic species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available