4.8 Article

Separation of Chemical Reaction Intermediates by Metal-Organic Frameworks

Journal

SMALL
Volume 7, Issue 16, Pages 2356-2364

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201100098

Keywords

-

Funding

  1. Novartis-MIT Center for Continuous Manufacturing
  2. MRSEC of the National Science Foundation [DMR-08-19762]

Ask authors/readers for more resources

HPLC columns custom-packed with metal-organic framework (MOF) materials are used for the separation of four small intermediates and byproducts found in the commercial synthesis of an important active pharmaceutical ingredient in methanol. In particular, two closely related amines can be separated in the methanol reaction medium using MOFs, but not with traditional C18 columns using an optimized aqueous mobile phase. Infrared spectroscopy, UV-vis spectroscopy, X-ray diffraction, and thermogravimetric analysis are used in combination with molecular dynamic simulations to study the separation mechanism for the best-performing MOF materials. It is found that separation with ZIF-8 is the result of an interplay between the thermodynamic driving force for solute adsorption within the framework pores and the kinetics of solute diffusion into the material pores, while the separation with Basolite F300 is achieved because of the specific interactions between the solutes and Fe3+ sites. This work, and the exceptional ability to tailor the porous properties of MOF materials, points to prospects for using MOF materials for the continuous separation and synthesis of pharmaceutical compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available