4.8 Article

Tearing Graphene Sheets From Adhesive Substrates Produces Tapered Nanoribbons

Journal

SMALL
Volume 6, Issue 10, Pages 1108-1116

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201000097

Keywords

fractures; graphene; mechanical properties; molecular dynamics; 2D materials

Funding

  1. DARPA [HR0011-08-1-0067]
  2. ARO [W911NF-06-1-0291]
  3. Royal Society
  4. European Research Council [ERC-2007-StG]

Ask authors/readers for more resources

Graphene is a truly two-dimensional atomic crystal with exceptional electronic and mechanical properties. Whereas conventional bulk and thin-film materials have been studied extensively, the key mechanical properties of graphene, such as tearing and cracking, remain unknown, partly due to its two-dimensional nature and ultimate single-atom-layer thickness, which result in the breakdown of conventional material models. By combining first-principles ReaxFF molecular dynamics and experimental studies, a bottom-up investigation of the tearing of graphene sheets from adhesive substrates is reported, including the discovery of the formation of tapered graphene nanoribbons. Through a careful analysis of the underlying molecular rupture mechanisms, it is shown that the resulting nanoribbon geometry is controlled by both the graphene substrate adhesion energy and by the number of torn graphene layers. By considering graphene as a model material for a broader class of two-dimensional atomic crystals, these results provide fundamental insights into the tearing and cracking mechanisms of highly confined nanomaterials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available