4.8 Article

Stabilization of Polymer-Hydrogel Capsules via Thiol-Disulfide Exchange

Journal

SMALL
Volume 5, Issue 22, Pages 2601-2610

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.200900906

Keywords

capsosomes; crosslinkers; hydrogels; layer-by-layer assembly; poly(methacrylic acid)

Funding

  1. Australian Research Council
  2. Swiss National Science Foundation (SNF) [PBEZB-118906]
  3. Korean Government [R11-2005-048-00000-0]
  4. National Research Foundation of Korea [2008-0060665, R11-2005-048-01005-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Polymer hydrogels are used in diverse biomedical applications including drug delivery and tissue engineering. Among different chemical linkages, the natural and reversible thiol-disulfide interconversion is extensively explored to stabilize hydrogels. The creation of macro-, micro-, and nanoscale disulfide-stabilized hydrogels commonly relies on the use of oxidizing agents that may have a detrimental effect on encapsulated cargo. Herein an oxidization-free approach to create disulfide-stabilized polymer hydrogels via a thiol-disulfide exchange reaction is reported. In particular, thiolated poly (methacrylic acid) is used and the conditions of polymer crosslinking in solution and on colloidal porous and solid microparticles are established. In the latter case, removal of the core particles yields stable, hollow, disulfide-crosslinked hydrogel capsules. Further, a procedure is developed to achieve efficient disulfide crosslinking of multilayered polymer films to obtain stable, liposome-loaded polymer-hydrogel capsules that contain functional enzymatic cargo within the liposomal subcompartments. This approach is envisaged to facilitate the development of biomedical applications of hydrogels, specifically those including fragile cargo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available