4.8 Article

Colorimetric Protein Sensing by Controlled Assembly of Gold Nanoparticles Functionalized with Synthetic Receptors

Journal

SMALL
Volume 5, Issue 21, Pages 2445-2452

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.200900530

Keywords

bioassays; gold; helical structures; hybrid materials; nanoparticles

Funding

  1. CeNano
  2. Swedish Research Council
  3. Swedish Foundation for Strategic Research (SSF)

Ask authors/readers for more resources

A novel strategy is described for the colorimetric sensing of proteins, based on polypeptide-functionalized gold nanoparticles. Recognition is accomplished using a polypeptide sensor scaffold designed to specifically bind to the model analyte, human carbonic anhydrase II (HCAII). The extent of particle aggregation, induced by the Zn2+-triggered dimerization and folding of a second polypeptide also present on the surface of the gold nanoparticle, gives a readily detectable colorimetric shift that is dependent on the concentration of the target protein. In the absence of HCAII, particle aggregation results in a major redshift of the plasmon peak, whereas analyte binding prevented the formation of dense aggregates, significantly reducing the magnitude of the redshift. The versatility of the technique is demonstrated using a second model system based on the recognition of a peptide sequence from the tobacco mosaic virus coat protein (TMVP) by a recombinant antibody fragment (Fab57P). Concentrations down to approximate to 10 nM and approximate to 25 nM are detected for HCAII and Fab57P, respectively. This strategy is proposed as a generic platform for robust and specific protein analysis that can be further developed to monitor a wide range of target proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available