4.2 Article

Tissue Engineering for Cutaneous Wounds: Selecting the Proper Time and Space for Growth Factors, Cells and the Extracellular Matrix

Journal

SKIN PHARMACOLOGY AND PHYSIOLOGY
Volume 22, Issue 2, Pages 83-93

Publisher

KARGER
DOI: 10.1159/000178867

Keywords

Tissue engineering; Extracellular matrix; Skin regeneration; Growth factor; Wound healing

Funding

  1. State of New York's NYSTAR program (eCAT award)

Ask authors/readers for more resources

Currently, autografts are the best treatment to any substantial cutaneous injury, and their success is well known as a burn therapy. However, autografts have been less successful in the treatment of chronic ulcers, and are usually a last-resort therapy because of infection at the injured site, high surgical expense, additional morbidity and engraftment failure. In addition, patients with burns covering more than 50% of their skin have limited donor sites for autograft harvest. Therefore, there is a great need for a cost-effective, user-friendly, tissue-engineered construct (TEC) that can provide successful treatments to both acute and chronic wounds in a wider repertoire of patients, including diabetics and the elderly. One approach to the challenge is to create a substitute for skin in vitro that can integrate into the engraftment site in vivo. An alternative is to engineer a biocompatible, resorbable matrix that can recruit the proper, native tissue cells to the injured site and induce them to heal the wound without scarring. This chapter reviews the 3 essential components of cutaneous wound healing, that is, cells, extracellular matrix molecules and bioactive molecules, that must be considered for designing TECs to potentially enhance the healing process. In nature, a 'dynamic reciprocity' exists amongst cells and extracellular matrix that is mediated by bioactive molecules at the site of injury. Thus, it is important to examine the interplay of all 3 components when engineering a TEC. This chapter also includes examples of commercially available products to highlight how researchers have already begun to find success in tissue engineering. Copyright (C) 2009 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available