4.6 Article

SIMPLEX STOCHASTIC COLLOCATION WITH RANDOM SAMPLING AND EXTRAPOLATION FOR NONHYPERCUBE PROBABILITY SPACES

Journal

SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume 34, Issue 2, Pages A814-A838

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/100817504

Keywords

random sampling; extrapolation; nonhypercube; essentially extremum diminishing; stochastic collocation

Funding

  1. United States Department of Energy under Stanford University [DE-FC52-08NA28614]
  2. Netherlands Organization for Scientific Research (NWO)
  3. European Union [680-50-1002]

Ask authors/readers for more resources

Stochastic collocation (SC) methods for uncertainty quantification (UQ) in computational problems are usually limited to hypercube probability spaces due to the structured grid of their quadrature rules. Nonhypercube probability spaces with an irregular shape of the parameter domain do, however, occur in practical engineering problems. For example, production tolerances and other geometrical uncertainties can lead to correlated random inputs on nonhypercube domains. In this paper, a simplex stochastic collocation (SSC) method is introduced, as a multielement UQ method based on simplex elements, that can efficiently discretize nonhypercube probability spaces. It combines the Delaunay triangulation of randomized sampling at adaptive element refinements with polynomial extrapolation to the boundaries of the probability domain. The robustness of the extrapolation is quantified by the definition of the essentially extremum diminishing (EED) robustness principle. Numerical examples show that the resulting SSC-EED method achieves superlinear convergence and a linear increase of the initial number of samples with increasing dimensionality. These properties are demonstrated for uniform and nonuniform distributions, and correlated and uncorrelated parameters in problems with 15 dimensions and discontinuous responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available