4.6 Article Proceedings Paper

ITERATIVE SOLVERS FOR THE STOCHASTIC FINITE ELEMENT METHOD

Journal

SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volume 32, Issue 1, Pages 372-397

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/080727026

Keywords

stochastic finite element method; polynomial chaos; multigrid; preconditioning

Ask authors/readers for more resources

This paper presents an overview and comparison of iterative solvers for linear stochastic partial differential equations (PDEs). A stochastic Galerkin finite element discretization is applied to transform the PDE into a coupled set of deterministic PDEs. Specialized solvers are required to solve the very high-dimensional systems that result after a finite element discretization of the resulting set. This paper discusses one-level iterative methods, based on matrix splitting techniques; multigrid methods, which apply a coarsening in the spatial dimension; and multilevel methods, which make use of the hierarchical structure of the stochastic discretization. Also Krylov solvers with suitable preconditioning are addressed. A local Fourier analysis provides quantitative convergence properties. The efficiency and robustness of the methods are illustrated on two nontrivial numerical problems. The multigrid solver with block smoother yields the most robust convergence properties, though a cheaper point smoother performs as well in most cases. Multilevel methods based on coarsening the stochastic dimension perform in general poorly due to a large computational cost per iteration. Moderate size problems can be solved very quickly by a Krylov method with a mean-based preconditioner. For larger spatial and stochastic discretizations, however, this approach suffers from its nonoptimal convergence properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available