4.6 Article

Quasi-optimal convergence rate for an adaptive finite element method

Journal

SIAM JOURNAL ON NUMERICAL ANALYSIS
Volume 46, Issue 5, Pages 2524-2550

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/07069047X

Keywords

error reduction; convergence; optimal cardinality; adaptive algorithm

Ask authors/readers for more resources

We analyze the simplest and most standard adaptive finite element method (AFEM), with any polynomial degree, for general second order linear, symmetric elliptic operators. As is customary in practice, the AFEM marks exclusively according to the error estimator and performs a minimal element refinement without the interior node property. We prove that the AFEM is a contraction, for the sum of the energy error and the scaled error estimator, between two consecutive adaptive loops. This geometric decay is instrumental to derive the optimal cardinality of the AFEM. We show that the AFEM yields a decay rate of the energy error plus oscillation in terms of the number of degrees of freedom as dictated by the best approximation for this combined nonlinear quantity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available