4.3 Article

DYNAMICAL APPROXIMATION BY HIERARCHICAL TUCKER AND TENSOR-TRAIN TENSORS

Journal

SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
Volume 34, Issue 2, Pages 470-494

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/120885723

Keywords

low-rank approximation; time-varying tensors; hierarchical Tucker format; tensor train format; tensor differential equations; tensor updates

Ask authors/readers for more resources

We extend results on the dynamical low-rank approximation for the treatment of time-dependent matrices and tensors (Koch and Lubich; see [SIAM J. Matrix Anal. Appl., 29 (2007), pp. 434-454], [SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2360-2375]) to the recently proposed hierarchical Tucker (HT) tensor format (Hackbusch and Kuhn; see [J. Fourier Anal. Appl., 15 (2009), pp. 706-722]) and the tensor train (TT) format (Oseledets; see [SIAM J. Sci. Comput., 33 (2011), pp. 2295-2317]), which are closely related to tensor decomposition methods used in quantum physics and chemistry. In this dynamical approximation approach, the time derivative of the tensor to be approximated is projected onto the time-dependent tangent space of the approximation manifold along the solution trajectory. This approach can be used to approximate the solutions to tensor differential equations in the HT or TT format and to compute updates in optimization algorithms within these reduced tensor formats. By deriving and analyzing the tangent space projector for the manifold of HT/TT tensors of fixed rank, we obtain curvature estimates, which allow us to obtain quasi-best approximation properties for the dynamical approximation, showing that the prospects and limitations of the ansatz are similar to those of the dynamical low rank approximation for matrices. Our results are exemplified by numerical experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available