4.3 Article

HANKEL MATRIX RANK MINIMIZATION WITH APPLICATIONS TO SYSTEM IDENTIFICATION AND REALIZATION

Journal

SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
Volume 34, Issue 3, Pages 946-977

Publisher

SIAM PUBLICATIONS
DOI: 10.1137/110853996

Keywords

rank minimization; nuclear norm; Hankel matrix; first-order method; system identification; system realization

Ask authors/readers for more resources

We introduce a flexible optimization framework for nuclear norm minimization of matrices with linear structure, including Hankel, Toeplitz, and moment structures and catalog applications from diverse fields under this framework. We discuss various first-order methods for solving the resulting optimization problem, including alternating direction methods of multipliers, proximal point algorithms, and gradient projection methods. We perform computational experiments to compare these methods on system identification problems and system realization problems. For the system identification problem, the gradient projection method (accelerated by Nesterov's extrapolation techniques) and the proximal point algorithm usually outperform other first-order methods in terms of CPU time on both real and simulated data, for small and large regularization parameters, respectively, while for the system realization problem, the alternating direction method of multipliers, as applied to a certain primal reformulation, usually outperforms other first-order methods in terms of CPU time. We also study the convergence of the proximal alternating direction methods of multipliers used in this paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available