4.6 Article

CARDIOVASCULAR PROTECTION OF ACTIVATING KATP CHANNEL DURING ISCHEMIA-REPERFUSION ACIDOSIS

Journal

SHOCK
Volume 37, Issue 6, Pages 653-658

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SHK.0b013e318252caf6

Keywords

Calcium image; metabolic acidosis; shock; vascular smooth muscle cells; voltage-dependent; calcium channel

Funding

  1. National Cheng Kung University Hospital
  2. Multidisciplinary Center of Excellence for Clinical Trial and Research, Department of Health, Executive Yuan, Taiwan [DOH101-TD-B-111-102]

Ask authors/readers for more resources

In clinical practice, prolonged occlusion of main arteries causes accumulation of metabolic waste and lactate. Reperfusion of blood flow is usually accompanied by circulatory shock. This study investigates the molecular mechanisms responsible for acidosis-induced hypotension and proposes therapeutic strategies for improving hemodynamic stability following ischemia-reperfusion acidosis. Vasomotor function of aortic rings was studied after cumulative addition of HCl in organ chambers (pH 7.4-7.0). Cultured vascular smooth muscle cells (VSMCs) were exposed to acidic buffer, and intracellular Ca2+ levels were determined with Fluo3-AM. In an in vivo experiment, rat aorta was cross-clamped for 45 min and followed by declamping. Hemodynamic changes were measured in the presence and absence of an ATP-sensitive K+ channel (K-ATP channel) antagonist PNU37883A (3 mg/kg). Acidosis induced vasorelaxation in a dose-dependent manner, which was significantly attenuated by a K-ATP antagonist glibenclamide. Inhibition of K-ATP channel increased intracellular Ca2+ load in the cultured VSMCs. Pretreatment with PNU37883A significantly attenuated systemic hypotension following reperfusion. However, systemic antagonism of K-ATP channel significantly increased the overall mortality. Recording of electrocardiogram showed progressive development of bradyarrhythmia with ST-segment elevation in animals pretreated with PNU37883A before reperfusion. We demonstrate that acidosis-induced vasodilation is, in part, mediated by the activation of K-ATP channels through reduction of intracellular Ca2+ in VSMCs. However, systemic antagonism of K-ATP channel significantly increases the overall mortality secondary to the development of cardiac dysrhythmia in animals with profound experimental metabolic acidosis, suggesting that activation of K-ATP channel is a protective response during reperfusion acidosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available