4.6 Article

INTERFERON REGULATORY FACTOR 1 MEDIATES ACETYLATION AND RELEASE OF HIGH MOBILITY GROUP BOX 1 FROM HEPATOCYTES DURING MURINE LIVER ISCHEMIA-REPERFUSION INJURY

Journal

SHOCK
Volume 35, Issue 3, Pages 293-301

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SHK.0b013e3181f6aab0

Keywords

HMGB1; IRF-1; TLR4; DAMP; sterile inflammation; ischemia/reperfusion injury

Funding

  1. Howard Hughes Medical Institute
  2. American College of Surgeons
  3. Society of University Surgeons

Ask authors/readers for more resources

Damage-associated molecular patterns (DAMPs) initiate inflammatory pathways that are common to both sterile and infectious processes. The DAMP, high-mobility group box 1 (HMGB1), and the transcription factor, interferon regulatory factor 1 (IRF-1), have been independently associated as key players in ischemia-reperfusion (I/R) injury. Our study demonstrates that IRF-1 contributes to hepatocellular release of HMGB1 and further that IRF-1 is a necessary component of HMGB1 release in response to hypoxia or after liver I/R. We also link the nuclear upregulation of IRF-1 to the presence of functional Toll-like receptor 4 (TLR4), a pattern recognition receptor also important in sterile and infectious processes. Using IRF-1 chimeric mice, we show that IRF-1 upregulation in hepatic parenchymal cells, and not in the bone marrow-derived immune cells, is responsible for HMGB1 release during ischemic liver injury. Finally, our study also demonstrates a role for IRF-1 in modulating the acetylation status and subsequent release of HMGB1 through histone acetyltransferases. We found that serum HMGB1 is acetylated after liver I/R and that this process was dependent on IRF-1. Additionally, liver I/R induced a direct association of IRF-1 and the nuclear histone acetyltransferase enzyme p300. Together, these findings suggest that I/R-induced release of acetylated HMGB1 is a process that is dependent on TLR4-mediated upregulation of IRF-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available