4.6 Article

ENDOTHELIN-1 CONTRIBUTES TO HEMOGLOBIN GLUTAMER-200-MEDIATED HEPATOCELLULAR DYSFUNCTION AFTER HEMORRHAGIC SHOCK

Journal

SHOCK
Volume 32, Issue 2, Pages 179-189

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SHK.0b013e318199352b

Keywords

Hemoglobin-based oxygen carrier; preconditioning; cytokine; intravital microscopy; microcirculation; bosentan

Ask authors/readers for more resources

Hemoglobin glutamer-200 (HbG) might be an alternative to human blood. However, artificial oxygen carriers are initially successful to restore oxygen supply but may induce organ dysfunction and increase mortality several days after application in terms of delayed side effects. Impairment of microcirculation and an inflammatory cytokine response through induction of endothelin (ET) 1 may contribute. We investigated the role of HbG for the therapy of hemorrhagic shock and for delayed side effects in a model of hemorrhagic shock and reperfusion (H/R). To analyze early effects, Sprague-Dawley rats (n = 8/group) were resuscitated after hemorrhagic shock (1 h) with shed blood or HbG followed by reperfusion (2 h). Hemorrhagic shock and reperfusion decreased liver microcirculation and hepatic function in both shock groups to the same extent. Thus, HbG was not superior to shed blood regarding resuscitation end points after hemorrhagic shock. To determine delayed effects, rats (n = 8/group) were pretreated with Ringer's solution (vehicle) or HbG (1 g/kg) 24 h before H/R. Endothelin receptors were blocked with bosentan. Subsequently, ET-1 expression, inflammatory response, sinusoidal perfusion, hepatocellular function (plasma disappearance rate of indocyanine green [PDRICG]), and redox state [NAD(P)H] were analyzed. After vehicle pretreatment, H/R increased ET-1, hepatocellular injury, NAD(P)H, and cytokine levels. Sinusoidal perfusion and PDRICG decreased. After HbG pretreatment, a further increase of ET-1 and hepatocellular injury was observed, whereas PDRICG further decreased. Application of bosentan after HbG but not after vehicle pretreatment significantly improved PDRICG and liver perfusion, whereas NAD(P)H and hepatocellular injury decreased. Furthermore, cytokine release changed to an anti-inflammatory response. These data suggest an HbG-dependent increase of ET-1, which may contribute to delayed side effects under shock conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available