4.7 Article

Extreme variation in migration strategies between and within wandering albatross populations during their sabbatical year, and their fitness consequences

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/srep08853

Keywords

-

Funding

  1. IPEV [109]
  2. Prince Albert II de Monaco Foundation
  3. European Research Council Advanced Grant under the European Community [ERC-2012-ADG_20120314]
  4. NERC [bas0100035] Funding Source: UKRI
  5. Natural Environment Research Council [bas0100035] Funding Source: researchfish

Ask authors/readers for more resources

Migratory behavior, routes and zones used during the non-breeding season are assumed to have been selected to maximize fitness, and can lead to genetic differentiation. Yet, here we show that migration strategies differ markedly between and within two genetically similar populations of wandering albatross Diomedea exulans from the Crozet and Kerguelen archipelagos in the Indian Ocean. Wandering albatrosses usually breed biennially if successful, and during the sabbatical year, all birds from Kerguelen migrate to the Pacific Ocean, whereas most from Crozet are sedentary. Instead of taking the shortest routes, which would involve a return against headwinds, migratory birds fly with the westerly winds, requiring detours of 10,000 s km. In total, migrants circumnavigate Antarctica 2 to 3 times, covering more than 120,000 km in a single sabbatical year. Our results indicate strong links between migratory behavior and fitness; all birds from Kerguelen breed biennially, whereas a significant proportion of those from Crozet, especially females, are sedentary and breed in consecutive calendar years. To breed annually, these females temporarily change mate, but return to their original partner in the following year. This extreme variation in migratory behavior has important consequences in term of life history evolution and susceptibility to climate change and fisheries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available