4.7 Article

Hierarchical heterostructure of CdS nanoparticles sensitized electrospun TiO2 nanofibers with enhanced photocatalytic activity

Journal

SEPARATION AND PURIFICATION TECHNOLOGY
Volume 122, Issue -, Pages 60-66

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.seppur.2013.11.009

Keywords

Electrospinning; Hierarchical; Photocorrosion; Photocatalysis; CdS/TiO2 nanofibers

Funding

  1. National Natural Science Foundation of China [51178173, 51202065, 51078129]
  2. Program for Innovation Research Team in University [IRT1238]
  3. Program for New Century Excellent Talents in University [11-0126]

Ask authors/readers for more resources

CdS nanoparticles coated on one-dimensional (1-D) TiO2 nanofibers with high photocatalytic activity, hierarchical heterostructure were successfully synthesized by a simple and practical electrospinning-assisted route. The CdS nanoparticles were dispersed within the entire surface of the as-electrospun TiO2 nanofibers, forming the hierarchical heterostructure. And, the composited nanofibers possessed extended light absorption region and lowest recombination rate of the electron-hole pairs. The removal efficiency of methyl blue (MB) over CdS/TiO2 nanofibers, CdS modified P25, TiO2 nanofibers and P25 was 80.8%, 73.4%, 72.4% and 51.2%, respectively. The highest photocatalytic activities over CdS/TiO2 nanofibers might arise from the increased surface area and the favorable electrons-transfer properties. Furthermore, the removal efficiency of MB in the present of Na2S-Na2SO3 as sacrificial agents can be improved by 120% compared to photocatalytic degradation in pure water due to the special redox capacity of suppressing photocorrosion of CdS. It is expected that the present work is notable for understanding the unique properties of the 1-D coupled nanocomposites and applying their practical application in the environmental protection issues. (C) 2014 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available