4.7 Article

Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite

Journal

SEPARATION AND PURIFICATION TECHNOLOGY
Volume 110, Issue -, Pages 11-19

Publisher

ELSEVIER
DOI: 10.1016/j.seppur.2013.02.037

Keywords

Polypyrrole; Nanocomposite; Adsorption; Chromium(VI); Fixed bed column; Breakthrough curve

Funding

  1. National Research Foundation (NRF) of South Africa

Ask authors/readers for more resources

The adsorption of Cr(VI) using polypyrrole/Fe3O4 nanocomposite adsorbent was investigated in a continuous flow fixed-bed column. The effects of composition of the nanocomposite, adsorbent mass, influent Cr(VI) concentration and flow rate on the adsorption characteristics of adsorbent was explored at pH 2. Experimental results confirmed that the breakthrough curves were dependent on bed mass, initial Cr(VI) concentration and flow rate. Three kinetic models; Yoon-Nelson, Thomas, Bohart-Adams were applied to the experimental data to predict the breakthrough curves using linear regression and to determine the characteristic parameters of the column that are useful for process design. The Yoon-Nelson and Thomas models were found appropriate for description of the whole breakthrough curves, whereas the Bohart-Adams model could only predict the initial part of the breakthrough curves. Using environmental water, the PPy/Fe3O4 nanocomposite demonstrated its effectiveness in Cr(VI) removal below acceptable level by processing 5.04 L water with initial 76.59 mg/L Cr(VI) concentration using only 2 g of adsorbent mass. It can be concluded therefore that PPy/Fe3O4 media provides alternative solution to ameliorate water contaminated with Cr(VI). (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available