4.7 Article

Evaluation of flow characteristics that give higher mixing performance in the 3-D T-mixer versus the typical T-mixer

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 202, Issue -, Pages 1209-1219

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2014.06.042

Keywords

Microfluidics; Convective micromixer; 3-D T-mixer; Continuous mixing; Vortex generation; Vortical flow

Ask authors/readers for more resources

A 3-D configuration of a T-mixer is evaluated under normal operating conditions of the called convective micromixers. The design has been called 3-D T-mixer in our previous work [1] as it adopts a three-dimensional structure at the T-junction. This design feature has been found that it exerts a strong effect on the flow characteristics in the device downstream in the mixing channel. A numerical study has been carried out in the 3-D T-mixer and the typical T-mixer, being these modelled with equal dimensions of channel lengths and cross sections and operated with the same flow rates. The flow analysis in the 3-D T-mixer reveals the quick formation of vortical flow structures composed of intertwined fluid filaments which increase drastically the fluids interface to enhance mixing. The flow patterns in the mixing channel vary with Reynolds number (Re) in the range 100-500. This study shows that the 3-D T-mixer provides a significant enhancement of mixing and presents lower pressure loss and similar level of shear stress compared to a typical T-mixer, in the whole range of Re used to characterize the flow. It has a simple channel configuration which is easy to fabricate and effective for mixing of continuous fluid and potentially particles. The 3-D T-mixer is called to be tested and applied for improving the efficiency of systems which have a T-junction in their design and require fast mixing with high throughput. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available