4.7 Article

Performance improvement of organic field-effect transistor ammonia gas sensor using ZnO/PMMA hybrid as dielectric layer

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 203, Issue -, Pages 9-16

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2014.06.083

Keywords

Organic field-effect transistor (OFET); OFET sensor; Ammonia gas; ZnO/PMMA hybrid dielectric; ZnO nanoparticles

Funding

  1. National Science Foundation of China (NSFC) [61177032]
  2. Foundation for Innovation Groups of NSFC [61021061]
  3. Fundamental Research Funds for the Central Universities [ZYGX2010Z004]

Ask authors/readers for more resources

Ammonia (NH3) gas sensors based on organic field-effect transistor (OFET) using poly(methyl methacrylate) (PMMA) blending with zinc oxide (ZnO) nanoparticles as a gate dielectric layer were fabricated. Compared to those with the pure PMMA dielectric layer, the sensing properties of these devices using ZnO/PMMA hybrid as the gate dielectric layer were significantly improved when the sensors exposed to various concentrations of NH3, and the percentage response was nearly 10 folds higher than that using pure PMMA under 75 ppm NH3. Also, the results showed that there was a remarkable shift in the threshold-voltage as well as a change in field-effect mobility after exposed to NH3 gas. By analyzing the morphologies of the dielectrics and pentacene films and the electrical characteristics of OFET, it was found that ZnO/PMMA hybrid gate dielectric layer was responsible for the enhanced sensing properties. Also, the decreased grain size of pentacene was formed on the ZnO/PMMA hybrid dielectric, facilitating NH3 to diffuse into the conducting channel and then interact with the ZnO nanoparticles. Moreover, the environmental stability of the OFET sensors was measured after storing the sensors under ambient atmosphere for 40 days. (C) 2014 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available