4.7 Article

A novel conducting polymer based platform for ethanol sensing

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 193, Issue -, Pages 306-314

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2013.12.007

Keywords

Conducting polymer; Ethanol biosensor; Alcohol oxidase; Covalent immobilization

Ask authors/readers for more resources

Anew amperometric ethanol biosensor was fabricated for sensitive and rapid analysis of ethanol. For this purpose, a novel monomer, 9-methyl-9H-carbazole-3-carbohydrazine (MCCH), was designed and electrochemically polymerized on a graphite electrode to achieve a conducting and effective immobilization matrix for enzyme immobilization. Due to the presence of amino groups in the structure of conducting polymer, alcohol oxidase molecules were covalently immobilized onto the functional polymer which brought an effective and long-life analysis of the substrate, ethanol. N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) chemistry was used for linking carboxylic acid groups of the enzyme molecules with amino groups of the polymer. After successful immobilization, amperometric biosensor responses were recorded at 0.7V vs. Ag/AgCl in phosphate buffer (pH 7.0). K-M(app) (8.74 mM), I-max (5.94 mu A), LOD (0.131 mM) and sensitivity (4.79 mu A mM(-1) cm(-2)) values were determined. Finally, the prepared biosensor was successfully applied for determination of ethanol content in alcoholic beverages. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available